Eine gängige Anwendung der Differentialrechnung ist die Optimierung einer Zielgröße. Optimierung bedeutet in diesem Sinne die Suche nach einem möglichst großen oder möglichst kleinen Wert. Beispiele sind die Suche nach einer minimalen Oberfläche, einem minimalen Volumen oder auch minimalen Kosten. In anderen Fällen könnte beispielsweise ein maximales Volumen oder auch maximaler Gewinn von Interesse sein.

Die Vorgehensweise zum Lösen solcher Fragen soll hier an zwei einfachen Beispielen aufgezeigt werden. Ein Schäfer möchte für seine Herde ein rechteckiges Feld umzäunen. Hierzu kann er diese Überlegungen anstellen: (Beispiel 1) er möchte 100 m Zaun verbauen. Das Feld ist für ihn optimal gestaltet, wenn er möglichst wenig Arbeit damit hat. Er möchte also eine möglichst große Fläche umzäunen, denn dann können seine Schafe dort länger bleiben, bevor er ein neues Feld abstecken muss. Er könnte auch so herum argumentieren: (Beispiel 2) eine Fläche von 400 m² reicht für seine Schafe für eine Woche, die wenigste Arbeit hat er damit, wenn er möglichst wenig Zaun aufstellen muss. In beiden Fällen sind Länge (L) und Breite (B) des Feldes zu bestimmen.

Generelle Vorgehensweise	Beispiel 1 (100 m Zaun, Fläche maximal)	Beispiel 2 (400 m² Feld, Zaunlänge minimal)
1) Randbedingungen festlegen	Da L und B beide Längen eines Feldes sein sollen, müssen	Wie in Beispiel 1 müssen L und B positiv sein. Eine Begrenzung
Aus geometrischen oder sonstigen Rahmenbedingungen	beide zwangsläufig positiv sein.	nach oben gibt es hier nicht, weil die 400 m² Feld immer
sind gesuchte Werte oftmals nach unten, nach oben oder in	Wenn das Feld sehr schmal wird, dann kann weder L noch	abgesteckt werden können. Wenn eine Seite sehr schmal wird,
beide Richtungen in ihrer Größe beschränkt.	B länger als 50 m werden, sonst reicht der Zaun nicht	dann muss die andere eben sehr groß werden. Und es steht ja
_	mehr für den Rückweg.	(zumindest theoretisch) beliebig viel Zaun zur Verfügung.
	0 < B < 50 und 0 < L < 50	0 < B und 0 < L
2) Hauptbedingung festlegen	Die zu optimierende Größe ist die Fläche A. Da es sich	Die zu optimierende Größe ist die Zaunlänge Z. Da es sich um ein
Die Hauptbedingung ist eine Gleichung, die die zu	hier um ein Rechteck handelt, berechnet sich die Fläche	Rechteck handelt, entspricht die Zaunlänge dem Umfang:
optimierende Größe berechnet. Üblicherweise hängt die	zu:	Z = 2L + 2B
Hauptbedingung von 2 oder mehr Variablen ab. Jede	A = L • B	Auch hier gibt es zwei Freiheitsgrade und zunächst ist erst
Variable drückt eine Gestaltungsmöglichkeit, d.h. einen	Hier gibt es als 2 Freiheitsgrade. Zunächst einmal können	einmal jede Kombination von L und B innerhalb der
Freiheitsgrad, des Problems aus.	beliebige Werte innerhalb der Randbedingungen gewählt	Randbedingungen zulässig.
	werden und für jede Kombination von L und B ergibt sich	
	dann eine bestimmte Fläche.	
3) Nebenbedingungen festlegen	Hier ist die Nebenbedingung, dass nur 100 m Zaun	In diesem Fall ist die Nebenbedingung die geforderte Fläche des
Jede Nebenbedingung schränkt einen Freiheitsgrad ein. Es	verbaut werden sollen. Die Zaunlänge entspricht dem	Feldes:
werden so viele Nebenbedingungen benötigt, dass die	Umfang:	400 = L ⋅ B
Hauptbedingung nur noch einen Freiheitsgrad hat. Bei 2	100 = 2L + 2B	Auch hier sorgt diese Gleichung dafür, dass die Kombination von
Freiheitsgraden also 1 Nebenbedingung, bei 3	Da diese Bedingung erfüllt sein soll ist nicht mehr jede	L und B nicht mehr beliebig ist.
Freiheitsgraden 2 Nebenbedingungen, usw.	Kombination von L und B möglich; ein Freiheitsgrad wird	
	eingeschränkt.	
4) Zielfunktion bestimmen	Die Nebenbedingung kann hier beispielsweise nach L	Hier kann die Nebenbedingung auch nach L umgestellt werden:
Die Zielfunktion ist die Hauptbedingung, in die die	umgestellt werden:	L = 400/B
Gleichungen aus den Nebenbedingungen so umgestellt und	L = 50 – B	Durch Ersetzen von L in der Hauptbedingung ergibt sich die
eingesetzt sind, dass eine Funktionsgleichung mit nur noch	Durch Ersetzen von L in der Hauptbedingung ergibt sich	Zielfunktion mit den entsprechenden Rechenregeln für
einer Variablen entsteht.	die Zielfunktion:	Exponenten:
	A(B) = (50 − B) • B	Z(B) = 2(400/B) + 2B
	$A(B) = 50B - B^2$	$Z(B) = 800 \cdot B^{-1} + 2B$

5) Extremwerte bestimmen	Mit den Ableitungsregeln:	Mit den Ableitungsregeln:
Kandidaten für Extremwerte, also Maxima oder Minima,	A'(B) = 50 – 2B	$Z'(B) = -800 \cdot B^{-2} + 2$
einer Funktion liegen bei Nullstellen der ersten Ableitung	Die Nullstelle der Ableitung:	Die Nullstelle der Ableitung mit den passenden Rechenregeln für
	50 – 2B _{extr.} = 0	die Exponenten: -800 • B _{extr.} -2 + 2 = 0
	B _{extr.} = 25	B _{extr.} = ±20
6) Randbedingungen einhalten	B _{extr.} = 25 liegt innerhalb des zulässigen Bereichs, kann	B _{extr.} = -20 liegt nicht innerhalb des zulässigen Bereichs, ist also
Die Kandidaten für Extremwerte müssen die	also weiter betrachtet werden.	zu verwerfen. Für die weiteren Betrachtungen kommt nur B _{extr.} =
Randbedingungen erfüllen. Es ist möglich, dass keiner,		20 infrage.
einer, mehrere oder auch alle Kandidaten für Extremwerte		
hier verworfen werden müssen.		
7) Maximum oder Minimum feststellen	Für die Randwerte von B ergibt die Fläche des Feldes	Mit den Ableitungsregeln:
Mithilfe der zweiten Ableitung oder einem sonstigen	A(0)=0 und A(50)=0. Dazwischen ist sowohl B als auch	$Z''(B) = 1600 \cdot B^{-3}$
geeigneten Verfahren oder einer geeigneten	(50-B) überall positiv. D.h. A(B)>0 im gesamten	und
Argumentation wird überprüft, ob es sich bei den übrigen	Gültigkeitsbereich. Auch ist A(B) eine Parabel und somit	Z''(20) = 0,2 > 0
Kandidaten für Extremwerte um Minima oder Maxima	stetig. Es kann sich also nur, wie gefordert, um ein	Es handelt sich entsprechend wie gefordert um ein Minimum bei
entsprechend der Fragestellung handelt.	Maximum bei	B _{min} = 20
	B _{max} = 25	und
	und	Z(20) = 80 = Z _{min}
8) Randwerte überprüfen	$A(25) = 625 = A_{max}$	Wenn B nach 0 strebt, dann wird L=400/B unendlich groß, also
Wenn beispielsweise nach einem Maximum gesucht wird,	handeln.	mehr als 80 m. Und wenn B unendlich groß wird, dann ist alleine
aber innerhalb der Randbedingungen nur ein Minimum		deswegen die Zaunlänge schon größer als 80 m.
gefunden wurde, dann muss einer der beiden Randwerte		Die Randwerte stellen hier also keine bessere Lösung dar.
der Variablen der Zielfunktion die optimale Lösung		
darstellen. Es gibt aber viele denkbare Szenarien, in denen		
trotz gesuchtem und gefundenem Maximum innerhalb der		
Randbedingungen der Randwert eine bessere Lösung		
darstellt. Randwerte müssen daher immer überprüft		
werden.		<u> </u>
9) Übrige Variablen berechnen	Aus	Aus
Aus den Gleichungen der Nebenbedingungen können die	$L_{\text{max}} = 50 - B_{\text{max}}$	L _{min} = 400/B _{min}
übrigen Variablen berechnet werden.	$L_{\text{max}} = 25$	L _{min} = 20
40) 0	die letzte verbleibende Variable.	die letzte verbleibende Variable.
10) Optimale Lösung(en) zusammenfassen	Mit 100 m Zaun lassen sich maximal 625 m² Feld	Für ein Feld von 400 m² benötigt man
Ein geeigneter Satz oder sonstige Darstellung schließt die	umzäunen. Dieses Feld hat die Maße	mindestens 80 m Zaun zum Umzäunen. Dieses Feld hat die Maße
Problemstellung zusammenfassend ab.		20 m x 20 m
	25 m x 25 m Es handelt sich also um ein Quadrat.	Es handelt sich also um ein Quadrat.
	ES Hallueit Sich also um em Quaurat.	ES Handert Sich also um em Quadrat.